Infection with a helminth parasite attenuates autoimmunity through TGF-beta-mediated suppression of Th17 and Th1 responses.
نویسندگان
چکیده
The lower incidence of allergy and autoimmune diseases in developing countries has been associated with a high prevalence of parasitic infections. Here we provide direct experimental evidence that parasites can exert bystander immunosuppression of pathogenic T cells that mediate autoimmune diseases. Infection of mice with Fasciola hepatica resulted in recruitment of dendritic cells, macrophages, eosinophils, neutrophils, and CD4(+) T cells into the peritoneal cavity. The dendritic cells and macrophages in infected mice expressed IL-10 and latency-associated peptide, and they had low surface expression of costimulatory molecules and/or MHC class II. Furthermore, most CD4(+) T cells in the peritoneal cavity of infected mice secreted IL-10, but not IFN-gamma or IL-4. There was a less significant expansion of CD4(+)Foxp3(+) T cells. F. hepatica-specific Tr1-type clones generated from infected mice suppressed proliferation and IFN-gamma production by Th1 cells. Infection was associated with suppression of parasite-specific Th1 and Th2 responses, which was reversed in IL-10-defective mice. Infection with F. hepatica also exerted bystander suppression of immune responses to autoantigens and attenuated the clinical signs of experimental autoimmune encephalomyelitis. Protection was associated with suppression of autoantigen-specific IFN-gamma and IL-17 production. The suppression of Th1 and Th17 responses and attenuation of experimental autoimmune encephalomyelitis by F. hepatica was maintained in IL-10(-/-) mice but was reversed by neutralization of TGF-beta in vivo. Our study provides evidence that F. hepatica-induced IL-10 subverts parasite-specific Th1 and Th2 responses, but that F. hepatica-induced TGF-beta plays a critical role in bystander suppression of autoantigen-specific Th1 and Th17 responses that mediate autoimmune diseases.
منابع مشابه
Infection with a helminth parasite attenuates autoimmunity through TGF-β-mediated suppression of Th17 and Th1 responses
The lower incidence of allergy and autoimmune diseases in developing countries has been associated with a high prevalence of parasitic infection. Here we provide direct experimental evidence that parasites can exert bystander immunosuppression of pathogenic T cells that mediate autoimmune diseases. Infection of mice with Fasciola hepatica resulted in recruitment or activation of regulatory dend...
متن کاملHelminth protection against autoimmune diabetes in nonobese diabetic mice is independent of a type 2 immune shift and requires TGF-β.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and wh...
متن کاملParasite Antigen-Specific Regulation of Th1, Th2, and Th17 Responses in Strongyloides stercoralis Infection.
Chronic helminth infections are known to be associated with modulation of Ag-specific CD4(+) T responses. However, the role of CD4(+) T cell responses in human infection with Strongyloides stercoralis is not well defined. To examine the role of CD4(+) T cells expressing Th1, Th2, and Th17 cytokines in strongyloidiasis, we compared the frequency (Fo) of these subsets in infected (INF) individual...
متن کاملSmad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development.
Although it has been well established that TGF-beta plays a pivotal role in immune regulation, the roles of its downstream transcription factors, Smad2 and Smad3, have not been fully clarified. Specifically, the function of Smad2 in the immune system has not been investigated because of the embryonic lethality of Smad2-deficient mice. In this study, we generated T cell-specific Smad2 conditiona...
متن کاملLoss of suppressor of cytokine signaling 1 in helper T cells leads to defective Th17 differentiation by enhancing antagonistic effects of IFN-gamma on STAT3 and Smads.
Suppressor of cytokine signaling 1 (SOCS1) is an important negative regulator for cytokines; however, the role of SOCS1 in Th17 differentiation has not been clarified. We generated T cell-specific SOCS1-deficient mice and found that these mice were extremely resistant to a Th17-dependent autoimmune disease model, experimental autoimmune encephalomyelitis. SOCS1-deficient naive CD4(+) T cells we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 183 3 شماره
صفحات -
تاریخ انتشار 2009